Highly Cited Articles on Google Scholar

Role of reactive oxygen species in the pathophysiology of human reproduction. [Times Cited: 1268]

Role of oxidative stress in female reproduction. [Times Cited: 1135]

Role of reactive oxygen species in male infertility. [Times Cited: 943]

Role of sperm chromatin abnormalities and DNA damage in male infertility. [Times Cited: 739]

Clinical relevance of oxidative stress in male factor infertility: an update. [Times Cited: 673]

Oxidative stress and male infertility: from research bench to clinical practice. [Times Cited: 566]

The effects of oxidative stress on female reproduction: a review. [Times Cited: 543]

Role of antioxidants in treatment of male infertility: an overview of the literature. [Times Cited: 488]

Prediction of endometriosis with serum and peritoneal fluid markers: a prospective controlled trial. [Times Cited: 458]

Oxidative stress & male infertility. [Times Cited: 455]

Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. [Times Cited: 449]

Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. [Times Cited: 415]

Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. [Times Cited: 413]


Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. [Times Cited: 407]


The role of free radicals and antioxidants in reproduction. [Times Cited: 405]


Role of oxidants in male infertility: rationale, significance, and treatment. [Times Cited: 388]


Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. [Times Cited: 385]


The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. [Times Cited: 381]


The genetic causes of male factor infertility: a review. [Times Cited: 371]